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Under standard assumptions, the average price change of a security caused
by a materially important announcement is zero. Event studies, used to
test whether announcements are materially important, must therefore “bin”
announcements into above or below market expectations. Otherwise, the
approach would have no power to reject a null hypothesis of a no announce-
ment effect. In situations where market expectations are unknown, we show
a Wald statistic (the square of the standardized cumulative abnormal return
found in standard event studies) is an easily implementable and powerful
approach to test whether an event affects securities prices. We also provide
three examples of its applicability.
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1 INTRODUCTION

Event studies play an important role in the study of how different phenomena affect
firms. Specifically, if a certain type of event happens, then how is a firms’ profitability (as
measured by their stock price) affected? The events studied range widely from whether
stock splits (Dolley (1933)), earnings announcements (Prakash (2013)), or merger and
acquisitions (Keown and Pinkerton (1981)) affect prices to whether Twitter sentiment
(Ranco et al. (2015)), political events (Herron (2000)) or data breaches (Johnson et al.
(2017)) are materially important. In the analysis below, we show how our extension
of the standard event study analysis is important to three distinctly different types of
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events: earnings announcements, winning the right to host the Olympic Games, and
patent related judicial decisions.

In general, events studies are based on a simple model of security prices that states the
price of a security changes if a materially important event occurs and is announced to
the market. If a large number of independent and materially important announcements
occur, then one could also posit the average change in the price of the underlying secu-
rity(ies) would be zero.1 This is the test the canonical event study implements (refer to
MacKinlay (1997) for a well-cited discussion) when testing whether a type of announce-
ment is materially important. Specifically, an event study uses multiple independent
announcements and calculates the average price change of the affected securities. If
the average is different from zero, then it is deemed the event is materially important.
However, the unconditional average is zero whether it is materially important or not.
In other words, the standard statistical approach used in an event study analysis has
no power in stating the event is materially important unless market expectations are
known. Given this shortcoming, we provide an approach to test for material important
events without knowing market expectations.

In defense of the standard approach, it is powerful if market expectations are known
and security price changes are “binned” accordingly. For example, earnings announce-
ments may be above or below market expectations. If many announcements are ob-
served, then the average price change as a result of the announcement would be zero.
To circumvent this issue, researchers bin the announcements into categories that reflect
above market expectations and below market expectations. For those in the above ex-
pectations bin, we see a positive impact. For securities and announcements that reflect
below average expectations, we observe a negative impact (refer to MacKinlay (1997)
for an example). However, if market expectations are unknown and the above and below
market expectations are lumped into one bin, then it is likely the standard event study
approach will fail to detect the impact of earnings announcements on securities prices.
As previously stated, the standard statistical approach has no power to reject a false
null hypothesis. We provide this as one of the applications in Section 3.3.1. Specifically,
we fail to reject an earnings announcement when market expectations are unknown or

1To demonstrate it in a basic environment, suppose there is a contract that pays “Xg” if the “good”
event happens and “Xb” if the bad event occurs. The “good” and “bad” outcomes occur with
probability p and (1-p), respectively. In a risk-neutral environment, or one where a sufficiently large
number of the contracts can be purchased and the outcomes of the events are independent, then the
price of the contract prior to realization of the outcome would be

pricepre−event = pXg + (1− p)Xb.

After the realization or announcement of the outcome, the price will be equal to the payoff, or Xg

in the case of the good event, or Xb in the case of the bad event, and on average we would observe
after the event the price to be

p̂ricepost−event = pXg + (1− p)Xb.

Therefore, a test of the material effect of the event on the contracts price using the average of the
difference between the price before and after the event, or pricepre−event− p̂ricepost−event, would fail
to reject it is different from zero because it is zero on average.
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the data isn’t separated into above and below market expectations.
To avoid the need for binning, i.e., knowing market expectations, we propose the use

of a Wald statistic. The approach is a simple extension of the standard event study
analysis. Specifically, for each announcement, the researcher calculates and standardizes
abnormal returns in an event window relative to an estimation window using a model
of the researcher’s choice (e.g., a “market model”). While the standard event study
approach bins the observations, sums the abnormal returns, and tests whether the sum
is different from zero using a standard normal distribution, our approach using the Wald
statistic involves first squaring the abnormal returns, then summing and comparing the
statistic to the appropriate (χ2) distribution. The key is that observations do not average
to zero as their contributions are all squared and thus positive.

To detail our proposed method, we first describe the Wald statistic (Section 2) and
compare its implementation to the standard statistical approach to event study analysis
(Section 2.5). We then analyze its power (Section 3.1) and provide three applications
where in the latter case, the null hypothesis under the standard approach would fail to
be rejected, while using our method based on the Wald statistic, it is rejected (Section
3.3).

To understand the applicability of our approach and alternative solutions to testing for
the material importance of specific announcements when market expectations unknown,
it is important to document the related literature. The event study literature is replete
with approaches for testing market efficiency using the concept of abnormal returns. For
simplicity, we classify them according to the following criteria: (i) those that use the
entire distribution of returns and require no parametric assumptions, (ii) those based
on normal distribution theory and require knowledge of market expectations, and (iii)
those that test for a change in variance. Regardless of the approach, the generic alternate
hypothesis is that the event had some effect on the returns. This may be further specified
as a change in mean, change in variance, or change in the distribution all together. Note,
a brief survey of these methods is described by Serra (2002).

In terms of our first classification, the non-parametric tests encompass a variety of
approaches. The stochastic dominance (SD) criteria, as discussed by Falk and Levy
(1989), Hertzel (1991), and Larsen and Resnick (1999), use the entire distribution of
returns in assessing market efficiency. As a statistical approach, SD is closely aligned
with the non-parametric Kolmogorov-Smirnov (K-S) test, which in the one-sample case,
tests an empirical cumulative distribution function (CDF) against a reference CDF, or in
the two-sample case, compares two empirical CDFs for equality. The distribution would
likely be comprised of standardized observations, where the standardization involves the
incorporation of risk (e.g., the standard deviation). As an alternative, rank tests such
as Corrado (1989) and more recently Kolari and Pynnonen (2011) also provide a non-
parametric approach to testing for a material impact of an announcement on a security’s
price. However, these studies are likely more similar to the standard event study, or our
second classification, at least in terms of our analysis, as the test requires binning or
market expectations.

In terms of our second classification, or what we loosely call an “event study,” our
method is built on the work of Patell (1976), or the use of standardized cumulative
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abnormal returns, and Brown and Warner (1980) and Boehmer et al. (1991) who adjust
for measuring the variance in returns caused by the event. The work is surveyed by
MacKinlay (1997), Serra (2002), Kothari and Warner (2007) and Corrado (2011) among
others. The event study approach is based on normal distribution theory and to be
effective in identifying market inefficiency, requires knowledge of market expectations.
Prior to any statistical analysis, observations need to be binned according to above or
below market expectations. Normal performance of the return is measured within an
estimation window using quite often a “constant mean” or “market” model, both of
which require an assumption of normality. The abnormal return can then be estimated
as the difference between the observed return in the event window and the normal
performance, which under the null hypothesis, should be the same in both estimation
and event windows. The abnormal returns may then be averaged over firm and then
aggregated over the event window. A test based on a standard normal statistic using the
mean cumulative abnormal return is then employed to identify a possible mean effect.

For our final classification, testing for market efficiency by looking for a change in
variability is well established in the literature (Beaver (1968); Rohrbach and Chandra
(1989); Boehmer et al. (1991)). Beaver defines a U -statistic, which is the ratio of the
squared residual from event window (report period) data to the estimated variance from
the estimation window (non-report period) data, as a way to quantify the effect of an
earnings announcement. Rohrbach and Chandra compare the power of Beaver’s U to a
statistic they term May’s U , which is based on the absolute value of the standardized
residual. When the residuals are normally distributed, Beaver’s U is optimal in detecting
a change in variance. However, in the presence of leptokurtic residuals, May’s U domi-
nates Beaver’s U , although both are unreliable. They also give an empirical distribution
approach for testing Beaver’s U and May’s U in this circumstance and offer a non-
parametric statistical approach based on the ranks of the squared residuals. Boehmer
et al. (1991) discuss the importance of incorporating event-induced variance changes in
the test for zero average abnormal returns. An underestimation of the variance (that is
assuming the variance in the event window is equal to that in the estimation window)
can lead to rejection of the null hypothesis more frequently than it should. Further-
more, they propose a standardized cross-sectional test that uses variance information
from both estimation and event windows.

There are similarities between our Wald statistic approach and the three methods
outlined above. For example, the squared residual in the numerator of Beaver’s U
statistic is equivalent to the square of the abnormal return under the hypothesis that the
mean return does not change from estimation window to event window. In other words,
without close inspection, it may appear the Wald test we are proposing is equivalent
to testing for a change in variance. We are not, as indicated by the fact we estimate
different variances for the estimation and event windows.

A variance change can occur in the presence or absence of a chance in mean. If one
were only testing for a change in variance, estimates of the variability in the estimation
and event windows would be derived, relative to the mean in each window. One could
then use these estimates in a two-sample F -test. In the Beaver and Hertzel papers, both
authors make the assumption of absence in a change in mean return, when testing for a
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change in variance.

In our work, we do not need to make any assumptions about a possible change in vari-
ance between the estimation and event windows. Our approach is based on quantifying a
change in mean with an estimator that captures the difference between the mean return
under the null hypothesis and that observed in the event window. Normalization of the
squared residuals is not accomplished by dividing by the variance in the estimation win-
dow. Instead, because we are testing for a change in mean, we divide by the variance of
the estimator of this change in mean, which results in the Wald statistic. This estimator
variance includes measures of variability from both estimation and event windows. To
put it different, we build on Patell’s work of standardized residuals, and use Beaver’s
approach by squaring them, but we use the proper variance of the estimator to ensure
we are testing a change in the mean rather than the variance. To summarize and make
clear, our approach may look like a test for a change in variance using standardized
cumulative abnormal returns. However, it is a test for a change in the mean.

As our method is more flexible than classification (iii) and is capable of accomplish-
ing the test of an announcements effect even when binning isn’t available (ii), the last
comparison is related to (i). In this case, we show empirically in Section 3.1 that our
Wald statistic is more powerful than a K-S test based on assumptions following power
estimates found in MacKinlay (1997).

As we are proposing a new method to test for materially important events when the
market expectations are not known, it is important to consider when such situations oc-
cur and when our method would be needed. In Section 3.3, we provide two applications:
patent decisions and International Olympics Committee announcements of whether a
country has won the right to host the Olympic Games. In both cases, the announce-
ment may sometimes be good or bad. For example, a firm may technically lose a patent
case, but the stock price rises because it is better than the market expected. As a re-
sult, our method would be needed to see whether patent decisions mattered. However,
many other applications beyond our two could be considered. For example, does the
retirement of a CEO, a change in greenhouse gas emission standards, or tariffs impact
companies’ bottom lines? As these events may be good or bad for companies depending
upon the situation, any standard event study could fail to detect their importance unless
a method like the one being proposed here is used.

2 METHODOLOGY

2.1 The Model

In the following discussion, our notation is adopted from MacKinlay (1997). In an event
study, we look to determine if the occurrence of the event resulted in some “abnormal”
behavior of a certain outcome. If so, then it will be concluded that the announcement of
the event had a material impact on the outcome. In general, and in all of our examples,
the event date is the date a public announcement is made about an event that may
contain material information, i.e., affect a security’s price.

The “event date” is set to be τ = 0. We define an event window as
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τ1 ≤ τ < τ2 ≡ [τ1, τ2) , (1)

where τ1 is the initial day of the event window and τ2 is the final (not included) day.
Usually, τ1 ≤ 0 < τ2. To measure any abnormality, an estimation window is used to
quantify what is “normal” behavior of the outcome, that is, behavior prior to the event.
We define the estimation window as

T0 ≤ t < T1 ≡ [T0, T1) , (2)

where T0 is the initial day of the estimation window and T1 is the final (not included)
day. Note t is used as the index for time points in the estimation window while τ is used
for time points in the event window. This delineation is useful when computing similar
statistical quantities in each window.

A statistical comparison is made between a security’s price in the estimation and event
windows. If the difference is statistically significant, then we may conclude the event
had a material impact.

We choose to use a simple linear market model, which is arguably the standard for
event studies, for the underlying relationship between the asset returns for a firm and
the overall market returns. Specifically, assume we have t = 1, 2, . . . , Nt observations
in the estimation window given by {(Rmt, Rit)}Nt

t=1, where Rmt is the market return at
time t and Rit is the return for firm i at time t. Using the market model, we express the
return for firm i as

Rit = αi + βiRmt + ϵit , (3)

where αi and βi are the population intercept and slope of the linear model in the es-
timation window, and ϵit is the random error term with expected value equal to zero,
or E(ϵit) = 0, and variance V (ϵit) = σ2

ϵi . As a consequence, E(Rit) = αi + βiRmt and
V (Rit) = σ2

ϵi .

Similarly, in the event window, we have τ = 1, 2, . . . , Nτ observations of the form
{(Rmτ , Riτ )}Nτ

τ=1, where Rmτ is the market return at time τ and Riτ is the return for
firm i at time τ . We express the return for firm i as

Riτ = α
′
i + β

′
iRmτ + ϵ

′
iτ , (4)

where α
′
i and β

′
i are the population intercept and slope of the linear model in the event

window, and ϵ
′
iτ is the random error term. We similarly note that E(ϵ

′
iτ ) = 0 and

V (ϵ
′
iτ ) = σ2

ϵ
′
i

, which result in E(Riτ ) = α
′
i + β

′
iRmτ and V (Riτ ) = σ2

ϵ
′
i

.

The Wald statistic we propose is testing for a change in the expected return between
estimation and event windows, but does not test for a change in the variance. Testing
for a change in expected return is equivalent to testing

H0 : αi = α
′
i and βi = β

′
i

Ha : αi ̸= α
′
i or βi ̸= β

′
i

, (5)



Bryan Engelhardt & Edward Soares	 27Journal of Econometrics and Statistics 7

whereas a change in variance tests

H0 : σ2
ϵi = σ2

ϵ
′
i

Ha : σ2
ϵi ̸= σ2

ϵ
′
i

, (6)

In the formulation of our Wald statistic, we are allowing the variances in the estimation
and event windows to be different.

The reader will note that these formulations can easily accommodate additional factors
in both the estimation window and event window models.2

2.2 Parameter Estimation

The regression parameters for each simple linear model can be estimated using ordinary
least squares (OLS). For the estimation window model in Eqn. (3), we find

β̂i =
∑Nt

t=1(Rmt−Rm)(Rit−Ri)∑Nt
t=1(Rmt−Rm)2

α̂i = Ri − β̂iRm,

, (7)

where Rm and Ri are the sample mean returns for the market and firm i, respectively.
Similar expressions hold for the event window model in Eqn. (4)

β̂
′
i =

∑Nτ
τ=1(Rmτ−R′

m)(Riτ−R
′
i)∑Nτ

τ=1(Rmτ−R′
m)2

α̂
′
i = R

′
i − β̂

′
iR

′
m

, (8)

where R′
m and R

′
i are the sample mean returns for the market and firm i within the

event window, respectively.
Within the estimation window, a point estimate for the mean E(Rit) is given by

R̂it = α̂i + β̂iRmt

= Ri + β̂i(Rmt −Rm)
. (9)

This equation can also be used to predict the value of a return for firm i at time t = h
at a new market return value Rmh

R̂ih = α̂i + β̂iRmh

= Ri + β̂i(Rmh −Rm)
. (10)

2Instead of using a simple linear market model, a more complex multiple linear model that includes
other factors may be employed. All of the analysis that follows extends to this multiple regression
case, however matrix notation must be utilized in most of the derivations. The values of the covariates
are specified in a design matrix X, which plays a fundamental role in the calculation of the variances
for the respective point estimates (refer to Kutner et al. (2005), pp. 206-209 and pp. 214-231 for
details).
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The statistical properties of our parameter estimates3, or α̂i and β̂i, allow us to compute
the population mean and variance of this point estimate to be

E(R̂ih) = E(α̂i) +RmhE(β̂i)

= αi + βiRmh

, (12)

and

V (R̂ih) = V (Ri) + (Rmh −Rm)2V (β̂i)

= σ2
ϵi

(
1
Nt

+ (Rmh−Rm)2

TSSRm

)
,

(13)

where TSSRm is defined as the total sum of squares of Rmt in the estimation window

TSSRm =

Nt∑
t=1

(Rmt −Rm)2 . (14)

In general, the population variances σ2
ϵi and σ2

ϵ
′
i

will be unknown. In such circumstances,

the population variances are replaced by their respective mean square errors (MSE),
which are unbiased estimates of the population parameters,

σ̂2
ϵi = 1

Nt−2

∑Nt
t=1(Rit − R̂it)

2

σ̂2
ϵ
′
i

= 1
Nτ−2

∑Nτ
τ=1(Riτ − R̂iτ )

2

. (15)

2.3 Hypothesis

To test if the event had a material impact on the security’s price, we (and the event
studies literature more broadly) compute the difference between the actual return ob-
served during the event window, Riτ , and the expected return E(Riτ ), computed under
H0 as defined in Eqn. (5)

E(Riτ ) = α
′
i + β

′
iRmτ

= αi + βiRmτ

≈ α̂i + β̂iRmτ

= R̂iτ

, (16)

If the event had no material impact on the security’s price, we would expect the mean
return to be the same in both estimation and event windows. The difference is defined

3The statistical properties of the estimates of our intercept and slope parameters for the estimation
window can easily be shown to be (refer to Kutner et al. (2005), p. 41, 49)

E(α̂i) = αi, V (α̂i) = σ2
ϵi

(
1
Nt

+ (Rm)2∑Nt
t=1(Rmt−Rm)2

)
= σ2

ϵi

(
1
Nt

+ (Rm)2

TSSRm

)
,

E(β̂i) = βi, V (β̂i) =
σ2
ϵi∑Nt

t=1(Rmt−Rm)2
=

σ2
ϵi

TSSRm
.

(11)
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here and in the literature as the “abnormal return” ÂRiτ , which is computed using (10)
and (16)

ÂRiτ = Riτ − E(Riτ )

≈ Riτ − R̂iτ

= Riτ − α̂i − β̂iRmτ

= Riτ −Ri − β̂i(Rmτ −Rm)

, (17)

More specifically, we and the event studies literature test the hypothesis

H0 : E(ÂRi) = 0

Ha : E(ÂRi) ̸= 0
, (18)

where the expected value and variance of ÂRiτ are computed from (17) as

E(ÂRiτ ) = E(Riτ )− E(α̂i)−RmτE(β̂i)

= α
′
i + β

′
iRmτ − αi − βiRmτ

= (α
′
i − αi) + (β

′
i − βi)Rmτ

, (19)

and

V (ÂRiτ ) = V (Riτ ) + V (Ri) + (Rmτ −Rm)2V (β̂i)

= σ2
ϵ
′
i

+
σ2
ϵi

Nt
+ (Rmτ −Rm)2

σ2
ϵi

TSSRm

= σ2
ϵ
′
i

+ σ2
ϵi

(
1
Nt

+ (Rmτ−Rm)2

TSSRm

) . (20)

Note that V (ÂRiτ )
4 contains contributions from the variability in both the estimation

and event windows.
Rather than looking at a single day, it is standard in the event studies literature to

aggregate returns over several days, as it is unclear when the market was aware of the
potentially material information and how long it took for the information to affect the
security’s return. As a result, we aggregate the abnormal returns over the event window
by computing the cumulative abnormal return of the observations

ĈARi =

Nτ∑
τ=1

ÂRiτ , (21)

and test the hypothesis

H0 : E(ĈARi) = 0

Ha : E(ĈARi) ̸= 0
. (22)

The expected value of ĈARi is

4This is true because the covariance between the pairs of random terms in Eqn (17) is zero (refer to
Kutner et al. (2005), p. 53 for a proof).



30	 Journal of Econometrics and Statistics10 Bryan Engelhardt and Edward Soares

E(ĈARi) =
∑Nτ

τ=1E(ÂRiτ )

=
∑Nτ

τ=1

(
(α

′
i − αi) + (β

′
i − βi)Rmτ

)

= Nτ

[
(α

′
i − αi) + (β

′
i − βi)R

′
m

] , (23)

where R′
m is the sample mean return for the market within the event window. Notice

that E(ĈARi) = 0 when αi = α
′
i and βi = β

′
i. Thus, the null and alternate hypotheses

in Eqn. (22) can be considered as a test on whether the information affects a security’s
model parameters α or β, as originally expressed in Eqn. (5).

As a sum of a possibly large number of random variables ÂRiτ , we may conclude by
the Central Limit Theorem that ĈARi is approximately normally distributed where the
variance of ĈARi is

V (ĈARi) = V (
∑Nτ

τ=1Riτ −Ri − (Rmτ −Rm)β̂i)

= NτV (Riτ ) + V (NτRi) + V (β̂i
∑Nτ

τ=1(Rmτ −Rm))

= NτV (Riτ ) +N2
τ V (Ri) +

(∑Nτ
τ=1(Rmτ −Rm)

)2
V (β̂i)

= Nτσ
2
ϵ′i
+ σ2

ϵi

[
N2

τ
Nt

+
[
∑Nτ

τ=1(Rmτ−Rm)]
2

TSSRm

]
. (24)

As in Eqn. (20), the second equality arises from the fact that any two pairs of the
random terms are uncorrelated.

To reiterate, the Wald test we propose in the next section does not require an assump-
tion that σ2

ϵ′i
= σ2

ϵi , nor is the Wald statistic used as a test of a change in variance. That

being said, it is standard in the event studies literature to assume σ2
ϵ
′
i

= σ2
ϵi , and Nt is

sufficiently large so that

V (ĈARiτ ) = Nτσ
2
ϵi . (25)

This result makes it easy to apply our approach given a standard event study analysis.

2.4 Wald test

To this point in our analysis, the market model and estimation procedure we have
outlined follows the standard event study analysis. However, event studies do not use
a single observation to test whether an event has had a material impact. There isn’t
sufficient power when an abnormal return is on the order of 0.01 and the standard
deviation in the event or estimation window is on the order of 0.02. To improve this
lack of power, researchers calculate the average ĈARi across many of the same types of
events. However, as discussed in the Introduction and Section 3.1, the canonical event
study test has no power unless the events can be binned into above and below market
expectations.
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To avoid the binning issue, we use a Wald statistic to test for a cumulative abnormal
return at the firm level, or H0 : E(ĈARi) = 0 versus Ha : E(ĈARi) ̸= 0. In general, a
Wald statistic takes the following form

W = (θ̂ − θ)I(θ̂)(θ̂ − θ)

= (θ̂−θ)2

V (θ̂)

, (26)

where θ is the value of the population parameter to be tested, θ̂ is the maximum likeli-
hood estimate (MLE) of θ, and I(θ̂) = V (θ̂)−1 is the Fisher information, i.e., the inverse
of the variance of the estimator θ̂. If θ̂ is normally distributed, then the Wald statis-
tic follows a χ2-distribution with ν = 1 degrees of freedom (df). Otherwise, the Wald

statistic asymptotically follows a χ2-distribution. As ĈARi is normally distributed due
to the Central Limit Theorem, we can use the former result. In either case, the Wald
test statistic does not require security price returns to be normally distributed.

Using the Wald statistic to test H0 translates into evaluating whether

Wi = (ĈARi−0)2

V (ĈARi)
, (27)

is unusually large, where θ = E(ĈARi) = 0, θ̂ = ĈARi, and V (θ̂) = V (ĈARi). If
α = 0.05 denotes the significance level andWi > χ2

0.05(1), then we rejectH0 and conclude
that the event’s information did have a material impact on security i’s return.

As stated in the Introduction, Eqn. (27) is not testing for a change in variance as is
done in Beaver (1968) or Hertzel (1991). In their respective articles, the authors divide
the squared residuals by the sample variance derived from the estimation window. Our
ĈARi statistic captures the deviation between the mean returns from the estimation and
event windows. However, we divide this estimator by its variance, which naturally forms
a Wald statistic. A true test for a change in variance tests the assumption σ2

ϵ
′
i

= σ2
ϵi

using an F -statistic (or equivalent non-parametric test). Our work is distinctly different
and does not require the assumption of equal variances.

At the individual observation/event level, it isn’t necessary to use the Wald statistic
we propose in Eqn. (27), as there is no “averaging to zero,” given there is only one
observation/event i. However, this is rarely a solution, as one observation is rarely
powerful enough to reject a false null hypothesis. Looking beyond an individual event
and firm, we and the standard event study aggregate across multiple events of the same
type. In the case of the standard approach, the aggregation has no power without
“binning” the observations. In our case, it isn’t an issue as the observations are squared.

The approach for testing the omnibus null hypothesis

H0 : E(ĈAR1) = E(ĈAR2) = · · · = E(ĈARN ) = 0

Ha : At least one E(ĈARi) ̸= 0.
(28)

simultaneously based on a Wald statistic for an individual firm requires aggregating over
firms
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W =
∑N

i=1Wi =
∑N

i=1
(ĈARi−0)2

V (ĈARi)
∼ χ2(N) , (29)

where N represents the total number of firms i = 1, 2, . . . , N and W follows a χ2-
distribution with ν = N df. If W > χ2

0.05(N) for a significance level of α = 0.05, then
we reject H0 and conclude that the event did influence the return for at least one firm i.

Given the Wald test we propose here, it is important to note it can suffer from common
problems in the field of inference. For example, there can be a missing variable bias if
the event regularly occurs at the same time as another event. Furthermore, if the θ̂ is
not normally distributed, or the asymptotic behavior is not achieved, then the use of
the χ2-distribution may be flawed.

2.5 Implementation

To promote our more robust approach to event study analysis, and to further highlight
the method, we provide a step-by-step guide to its implementation. Given a defined
estimation and event window for securities i = 1, .., N and their associate security returns
Rit and Riτ , a researcher would test for a material impact by

1. Computing model parameters α̂i, β̂i, α̂
′
i, and β̂

′
i based on Eqns. (7) and (8) for

each firm i,

2. Computing ÂRiτ for each firm and day in the event window following Eqn. (17)

and summing across the event window to compute ĈARi for each firm i,

3. Computing V (ĈARi) using Eqn. (24) and (likely) the mean squared error from
the OLS estimation as an estimate for σ2

ϵi and σ2
ϵ
′
i

following Eqn. (15),

4. Computing Wi for an individual firm, or W for a group of firms, following Eqns.
(27) and (29), respectively, and

5. Evaluating whether W for a group of firms (or Wi for an individual firm) is above
or below the critical value χ2

α(N) (or χ2
α(1) for an individual firm) and rejecting,

or failing to reject, the null hypothesis at a significance level α and by extension
whether the information had a material impact on security prices (or price for an
individual firm).

Note, the main difference in this step-by-step process to the standard event study ap-
proach is in Step 4 where one calculates

W =
∑N

i=1
(ĈARi−0)2

V (ĈARi)
∼ χ2(N) , (30)

instead of

z0 =
1
N

∑N
i=1

(ĈARi−0)

V (ĈARi)1/2
∼ N(0, 1) , (31)
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and in Step 5, where the former follows a χ2(N) distribution and the latter follows a
standard normal distribution. In other words, the computations are nearly equivalent
and therefore our approach can easily be completed by a researcher if they have already
completed a standard event study.

With this comparison in mind, our method has other similar characteristics to that
of the standard event study. For instance, one can easily increase or decrease the size of
the event window. The benefits of increasing the size of the event window is two fold:
one has additional observations and can reduce the variation in the estimate of σ2

ε′ and
can capture any delay in incorporating the information into the stock price. However,
similarly to standard event studies, determining the length of the event window is ad-hoc
and the longer the window the less power the test has in being able to reject a false null.
Furthermore, longer event windows may enduce some of them to overlap and violate
the assumption of independence between error terms. To reiterate, many benefits and
drawbacks of standard event studies are true when using the Wald test proposed here.

3 RESULTS & DISCUSSION

3.1 Comparing the Wald, z, and K-S tests

In the event study literature, tests of the null hypothesis given in Eqn. (28) using
what Campbell et al. (1997) terms the standardized cumulative abnormal return as
provided in Eqn. (35) are well established. The reader will note that it is common,
although unnecessary, to make the simplifying assumptions necessary to use Eqn. (25)

for V (ĈARi). As a result, it is trivial to switch to the Wald test we describe, since it
simply requires squaring z statistics and using the χ2 distribution.

As an added comparison, a one-sample Kolmogorov-Smirnov (KS) approach as first
discussed by Falk and Levy (1989) and more recently by Larsen and Resnick (1999)
will be included in our evaluation of our Wald test and the standard normal approach.
Specifically, this entails testing whether ĈARi ∼ N(0, 1) for i = 1, ..., N .5 Since this
K-S approach is a non-directional test free of the binning requirement, we provide it as
a comparison to the Wald statistic approach we are promoting. The K-S test can be
thought of as having power without knowing how to “bin” observations.

Given a set of ordered observations {Zi}Ni=1 where

Zi =
(ĈARi−0)

V (ĈARi)1/2
, (32)

we compute the empirical cumulative distribution function (CDF) Fn(z)

FN (z) = 1
N

∑N
i=1 I[−∞,x](Zi) , (33)

where the indicator function I[−∞,z](Zi) = 1 when z ≤ Zi and zero otherwise. Given
a reference CDF F (z), which in our case is the standard normal, we compute the K-S

5In footnote 7, it appears Hertzel (1991) uses the equivalent of the Wald statistic we are proposing and
tests the null of no effect using a Kolmogorov-Smirnov test.
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statistic as

DN = sup
z

|FN (z)− F (z)| .

We then test the K-S statistic using the critical values of the K-S distribution and reject
the null hypothesis that the empirical distribution is standard normal if

√
NDN > Kα , (34)

where the critical value Kα satisfies

Pr(K ≤ Kα) = 1− α . (35)

Whether one uses the Wald, z, or K-S tests, the machinery necessary to switch from
one to the other is relatively straightforward. They are all based on assuming a standard
normal distribution at the firm level (ĈARi). Given a set of statistics {ĈARi}Ni=1, one
can normalize and average them (z0), normalize, square, and sum them (W ), or compare
them to a standard normal distribution (K-S).

3.2 Power

Now that the similarities and ease of switching from one to the other has been estab-
lished, we evaluate and compare their relative power. Comparing each test’s performance
based on an analysis of power is more critical than identifying their similarities from an
implementation standpoint. We will show that the Wald statistic is the optimal approach
when “binning” the observations is not possible.

Power is the probability of rejecting the null hypothesis given that the alternate is
true. This is defined analytically for the Wald test as

P (α,Ha) = Pr(W > cχ(α)|Ha) , (36)

where cχ(x) = χ2(N)−1(x) is the critical value of the χ2-distribution with ν = N df.
For the z-statistic, power is given by

P (α,Ha) = Pr(z0 < cz

(α
2

)
|Ha) + Pr(z0 > cz

(
1− α

2

)
|Ha) (37)

where the critical value cz(x) = ϕ−1(x) is determined from the N(0, N) distribution.
Finally, for the K-S statistic, we find

P (α,Ha) = Pr(
√
nDn > Kα|Ha) , (38)

where Kα is the aforementioned critical value for the K-S distribution.

To tabulate and compare power for each statistical approach, one must posit plau-
sible scenarios for the model parameters. In this work, we use those described in the
benchmark article of MacKinlay (1997) by assuming abnormal returns of 0.5% and 1.5%
over the event window at the event level, a cumulative variance in returns of 0.0004 with
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σ2
ϵ′i
= σ2

ϵi , and a Type-I error rate of α = 0.05.6 Also, to compare the three approaches,

it is important to note the z-statistic approach requires binning of observations (such as
earnings announcements) as above expectation, below expectation, or at expectation.

In the case of binning, we follow MacKinlay (1997) to posit three bins are necessary,
where only the bins of “good news,” or the earnings announcement beats analysts’
expectations by a specific margin, and “bad news,” where the announcements are below
analysts’ by a specific margin, are used to test for an abnormal return. Furthermore,
a Bonferroni correction is applied given the multiple comparisons that are made (i.e.,
one tests whether the “good news” sample or the “bad news” sample rejects the null
hypothesis). As additional tests introduces a higher likelihood of Type I errors, the
binning case requires the power for the z-statistic to be calculated as

P (α,Ha) =
∑
i∈B

Pr(z0i < cz

( α

2b

)
|Ha) + Pr(z0i > cz

(
1− α

2b

)
|Ha) (39)

where b is the number of bins (B), and z0i is the z-statistic calculated from Eqn. (35)
using observations from each bin (B). Again, following MacKinlay (1997), we assume for
our power analysis that there are two bins in B where one-third can be clearly labeled as
“positive,” one-third as “negative,” and one-third cannot be distinguished. As a result,
the z test has one-third less observations due to issues of binning accuracy. Furthermore,
we have binned the observations for the K-S test as well as incorporated a Bonferroni
correction, as it has improved power as will be shown below.

Based on these assumptions, we have plotted the power as a function of the number of
events in each binning situation in Figure 1. Based on the posited environments, we can
see the standard normal approach is the most efficient approach, then the K-S approach,
then the χ2 (or Wald) approach we are documenting here. These results assume binning
is possible, i.e., market expectations are known and accurate.

The key take away is the z-statistic, i.e., the canonical event study approach, is the
way to go under the assumptions of the effect of the event on the securities’ prices,
variability in returns and binning feasibility.

What we are focused on is a situation where the latter is not feasible. If one assumes
binning isn’t possible, or market expectations are unknown, then the χ2 approach is a
clear winner as seen in Figure 2. Coupled with the fact it is an easy extension from the
z-test, we recommend it if binning isn’t possible or feared to be inaccurate.

The power analyses above are based on a presumption that the estimation window
is sufficiently large so that σ2

ϵi is known and the simplifying assumptions related to the
variance, or Eqn. (25), applies.

Note, if one assumes σ2
ϵ′i
must be estimated from the data and Nτ is relatively small,

then be cautious when using the Wald statistic we are proposing. If σ2
ϵ′i

is estimated

inaccurately, then the results may be misleading.

6We simulate the power assuming Eqn. (25), returns are normally distributed, and Nτ = 90 for each
event.
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Figure 1: Power of Tests with Binning

Figure 2: Power of Tests without Binning
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3.3 Applications

We provide three examples. The first demonstrates the method in a well known example
- earnings announcements. The second and third examples provide situations when the
method may be useful as the market expectations are unknown and the effect of the
event may be positive or negative theoretically.

3.3.1 Earnings announcements

A standard example for event studies is analyzing the effect earnings announcements
on a firm’s stock price, e.g., MacKinlay (1997) uses it to highlight his survey of event
studies.

To highlight the issue of “binning” in the standard approach, and how our Wald statis-
tic circumvents it, we analyze the effect of a company’s earnings guidance relative to the
census forecast provided by the Institutional Brokers Estimate System, or I/B/E/S. The
I/B/E/S breaks the guidance into three categories - “beat,” “matched,” and “missed”
relative to market expectations.

To reiterate, the theoretical issue is if one attempts to analyze the effect of a company’s
guidance on its stock price, without knowing market expectations, then one could find
no effect. It is due to the fact some companies may beat market expectations, and
thus likely increasing their price, while others may miss market expectations, thereby
lowering their stock price. Without market expectations, and splitting out the different
types of announcements, the standard event study approach would aggregate both of
these effects into one test statistic and they could wash out the underlying impact of
announcements overall.

The canceling effect can be seen in Table 1 where we estimate the effect of earnings
announcements on stock prices. Specifically, if the data are pooled (not binned), then
the z-statistic fails to reject a hypothesis that earnings guidance has no effect on stock
prices. Put differently, a researcher would fail to find an effect of announcements on
earnings. However, the Wald statistic (and KS approach) with the pooled data can
reject the null hypothesis of no effect.

Now, in this example, we have market expectations. Using I/B/E/S’s definition of
the types of announcements (beat, missed, matched), we can separate the sample and
find an effect using the standard event study approach (z-statistic). However, the Wald
statistic is a simple extension of the standard approach.

Market expectations, and by extension binning, can contain measurement error. One
can see it in the current example, or Table 1. Specifically, the standard approach after
binning fails to reject no effect for firms who “match market expectations.” However,
the Wald and KS approaches still reject even though firms match the market as defined
by I/B/E/S. In other words, firms who meet market expectations can still affect their
stock price in this example. It is something that can be missed with the standard event
study approach.
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3.3.2 Olympic announcements

In this second example, we apply the Wald statistic to the analysis of whether a country
winning or losing the chance to host the Olympics, as announced by the International
Olympics Committee on a particular day, has an effect on a country’s stock market.

In general, their has been a debate of the benefits of hosting a sporting event such
as the Olympic Games (e.g., Baade and Matheson (2016)). An argument can be made
hosting the Olympics requires burdensome public funding outlays and can do more harm
than good. Alternatively, others suggest there are huge gains that support the use of
public funding.

In terms of event studies related to Olympic announcements, there has been a debate
on whether the announcement has an impact as discussed in Dick and Wang (2010) and
Engelhardt et al. (2018b). As the effect may be positive or negative, and there isn’t
a clear indicator of what the market expects, the situation is a good place to apply
the Wald statistic. Furthermore, neither papers analyze the potential for a “mixing” of
positive or negative announcements in their analysis.

The results of the analysis on Olympic bids come from the data available in Tables 3
and 4 of Engelhardt et al. (2018b) where the primary losers and winners are used in the
analysis. The data has been replicated in Table 2. The full dataset is provided in this
example to allow individuals to replicate the tests.

The primary studies on the impact of the announcements separate the winning and
losing bids. The separation is the same as “binning.” The results by binned groups
are provided in Table 3. In this case, the Wald statistic does not add to the previous
literature. However, the research focuses on splitting the groups into winners and losers.
With the Wald approach, the focus can be changed away from assuming one group is
“better off.” In particular, given the research is unclear on whether it is a good or bad
for a country to win or lose their bid, winning or losing might not put countries in an
“good” or “bad” bin.

The results from testing a null hypothesis of a zero mean using all the observations
are in Table 4. We provide the results from the z, Wald, and KS tests. As one can see,
the results still fail to reject the null hypothesis that the abnormal return for countries
winning and losing the bid, at the time of the announcement, is zero. This is true
for all three types of tests. Nonetheless, the application demonstrates one does not
need to know whether the announcement was above or below market expectations. The
application here is particularly poignant as there may be a mixed outcome - winning or
losing could both be good or bad depending upon whether the country won or lost, the
country’s characteristics, and potentially changing information about whether hosting
the Olympics has positive or negative outcomes for a host country. In other words, it
isn’t clear a country winning the bid is a good thing or good from one point in time to
the next. It may depend. As a result, the Wald statistic is potentially necessary to test
for a material impact from the announcement.
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Figure 3: Smoothed Histogram of Patent Event z0s

3.3.3 Patent decisions

In our final example, we apply the Wald statistic to the analysis of whether the outcome
of an appealed United States patent decision, as decided by the United States Court of
Appeals for the Federal Circuit, has an effect on a firm’s stock price.

The results here are reiterating the more detailed work of Engelhardt et al. (2018a).
As a summary, patent decisions can transfer substantial monetary values between a
defendant and plaintiff. As a result, the publicly traded firms involved in these cases
can see their stock price rise or fall. However, binning the observations by “winner” and
“loser” is extremely difficult as it is relative to market expectations. In other words,
Company A may be awarded $1 billion as part of a court case, but this might be $1
billion less than the market expected. Therefore, what appears to a naive econometrician
is company A winning in the appeal. However, Company A’s stock price will fall as the
market expected more.

The court case dates were collected from Docket Navigator and the stock data from
Yahoo Finance. Given the significantly larger data set (roughly 687 observations depend-
ing upon event window size), we plot the standardized cumulative abnormal returns in
Figure 3. The statistics to test the null of no effect are provided in Table 5.

As one can see, if a researcher simply used the z or KS test, then they would fail
to realize patent decisions are materially important. However, if the Wald statistic is
applied, which has been shown to be more powerful in Section 3.1, we are able to reject
the null hypothesis of no announcement effect.
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4 CONCLUSION

In event studies where market expectations are undefined, we provide a squared test
statistic, i.e., a Wald statistic, to test for a material impact of an announced outcome.

To demonstrate its usefulness, we have shown in Section 3.2 its improved power over
both the standard event study approach and a K-S approach. Furthermore, in Section
3.3, we showed its importance in demonstrating the material impact of patent decisions
and its potential applicability in other situations. For example, does a political election,
the retirement of a CEO, greenhouse gas emission standards, or tariffs impact companies’
bottom lines? As the stock price will move relative to market expectations, or as these
outcomes may help some firms and hurt others, one cannot test for their impact with
a standard event study approach without market expectations. Our approach alleviates
the need to know expectations and it is a simple addition to the standard approach.

What we propose is not without some drawbacks. For instance, if there is a good
estimate of market expectations regarding the event, e.g., it was above or below analyst
forecasts, then the standard event study approach is more powerful as demonstrated in
Section 3.2. Furthermore, to estimate the idiosyncratic variation in returns in the event
window (σ2

ε′), one must either assume its variation is equal to the equivalent variation in
the estimation window (σ2

ε) or use the sample variation in the event window to estimate
it. In the later case, the size of the event window can make the estimate large and
inhibit our proposed approach. However, the standard event study uses the variation
from the estimation window and making the same assumption here eliminates the issue.
Finally, our approach assumes the idiosyncratic variation is normally distributed or the
Wald statistic achieves asymptotic behavior (χ2-distributed). If these are not true, then
a two-sample K-S test similar to the one discussed in Section 3.1 or other alternative
may be more appropriate. However, again, the standard event study approach assumes
the variation is normally distributed and the non-parametric approaches often, although
not always (Campbell and Wesley (1993)), provide similar results. However, extension
of the current work regarding the relaxation of the normal distribution assumption or
testing for sufficient sample sizes may provide more insight.

To summarize, we recommend researchers add to their event study analysis the use of
a Wald test to ensure against unknown or poorly measured market expectations. It is a
simple and straightforward extension when using the standard event study approach.
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Table 1: Test of Earnings Guidance on Stock Prices

Event windows

[0, 3) [0, 6) [−2, 3)

Pooled Data

z statistic -1.451 -1.71 -0.958

p-value with z0 0.147 0.087 0.338

W 3733.726 2699.843 2355.292

p-value with W 0.0 0.0 0.0

KS statistic 0.174 0.155 0.139

p-value with KS 0.0 0.0 0.0

Beat Market Expectations

z statistic 8.385 6.283 6.098

p-value with z0 0.0 0.0 0.0

W 466.886 373.87 286.598

p-value with W 0.0 0.0 0.0

KS statistic 0.372 0.297 0.305

p-value with KS 0.0 0.0 0.0

Missed Market Expectations

z statistic -11.537 -8.982 -8.372

p-value with z0 0.0 0.0 0.0

W 909.557 579.101 563.697

p-value with W 0.0 0.0 0.0

KS statistic 0.414 0.404 0.388

p-value with KS 0.0 0.0 0.0

Matched Market Expectations

z statistic -0.619 -1.088 -0.339

p-value with z0 0.536 0.276 0.734

W 2354.623 1742.897 1503.879

p-value with W 0.0 0.0 0.0

KS statistic 0.158 0.132 0.129

p-value with KS 0.0 0.0 0.0

Note: The data is based on companies who provide annual guidance
numbers as point estimates and per share between Jan 2016 to Dec
2017 and available in I/B/E/S. The data contains 63 observations
above market expectations, 59 below market expectations, and 378
matching expectations.
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Table 2: z0 by Bid

z0 for event windows

Olympic Year Season Country Announcement Bid [0, 3) [0, 6) [−2, 3)

1988 Summer Japan Sep 30, 1981 Lost -0.01 0.93 -0.48

1988 Summer South Korea Sep 30, 1981 Won -1.25 1.58 -0.47

1988 Winter Sweden Sep 30, 1981 Lost 1.07 1.3 -1.13

1988 Winter Canada Sep 30, 1981 Won 0.39 -0.42 3.47

1992 Summer France Oct 17, 1986 Lost -1.72 0.19 -2.16

1992 Summer Spain Oct 17, 1986 Won -0.93 -1.56 -1.08

1992 Winter France Oct 17, 1986 Won -1.72 0.19 -2.16

1994 Winter Sweden Sep 15, 1988 Lost -0.24 0.95 0.17

1994 Winter Norway Sep 15, 1988 Won 0.92 0.82 0.95

1996 Summer Greece Sep 18, 1990 Lost -1.67 -2.48 -0.09

1996 Summer USA Sep 18, 1990 Won 0.77 0.21 0.27

1998 Winter USA Jun 15, 1991 Lost -0.22 -0.73 0.1

1998 Winter Japan Jun 15, 1991 Won 0.13 -0.34 0.09

2000 Summer China Sep 23, 1993 Lost -0.13 0 0.08

2000 Summer Australia Sep 23, 1993 Won 1.13 0.87 0.35

2002 Winter Switzerland Jun 16, 1995 Lost -0.13 0.35 -0.12

2002 Winter Sweden Jun 16, 1995 Lost 0.98 0.97 0.11

2002 Winter USA Jun 16, 1995 Won 1.51 0.86 0.79

2004 Summer Italy Sep 05, 1997 Lost 0.28 -0.73 -0.47

2004 Summer Greece Sep 05, 1997 Won 2.98 1.42 1.92

2006 Winter Switzerland Jun 19, 1999 Lost 0.04 -0.51 0

2006 Winter Italy Jun 19, 1999 Won -0.1 -0.06 0.16

2008 Summer Canada Jul 13, 2001 Lost -0.1 0.32 -0.29

2008 Summer China Jul 13, 2001 Won -0.76 0.23 -1.17

2010 Winter South Korea Jul 02, 2003 Lost 0.59 0.93 0.59

2010 Winter Canada Jul 02, 2003 Won -0.6 0.31 -0.26

2012 Summer France Jul 06, 2005 Lost -0.38 0.55 0.07

2012 Summer UK Jul 06, 2005 Won -0.51 -0.02 0.8

2014 Winter South Korea Jul 04, 2007 Lost 2.03 2.28 2.86

2014 Winter Russia Jul 04, 2007 Won 0.62 0.6 0.55

2016 Summer Spain Oct 02, 2009 Lost 0.27 -0.31 -0.03

2016 Summer Brazil Oct 02, 2009 Won 1.24 0.3 0.54

2018 Winter Germany Jul 06, 2011 Lost -0.07 -0.37 -0.17

2018 Winter South Korea Jul 06, 2011 Won 0.47 -0.54 1.24

2020 Summer Turkey Sep 07, 2013 Lost 2.34 2 1.41

2020 Summer Japan Sep 07, 2013 Won 1.03 0.12 -0.06

2022 Winter China Jul 31, 2015 Won -1.29 -0.3 0.12

Note: A detailed discussion of the data, and its calculation, can be found in Engelhardt
et al. (2018b). The statistics are tabulated in the same fashion describe here, or in
particular following Equations 17, 21, 25, and 35.
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Table 3: Test of Olympic Bids Affecting Host Country Stock Market by Type

Event windows

[0, 3) [0, 6) [−2, 3)

Winning Bids

z statistic 0.928 0.985 1.396

p-value with z0 0.353 0.325 0.163

W 25.508 10.509 27.792

p-value with W 0.145 0.939 0.088

KS statistic 0.177 0.243 0.221

p-value with KS 0.544 0.178 0.268

Losing Bids

z statistic 0.695 1.332 0.111

p-value with z0 0.487 0.183 0.912

W 18.266 22.754 17.122

p-value with W 0.438 0.2 0.515

KS statistic 0.24 0.213 0.265

p-value with KS 0.213 0.342 0.132

Table 4: Test of Olympic Bids Affecting Host Country Stock Market: Winners and
Losers

Event windows

[0, 3) [0, 6) [−2, 3)

z statistic 1.149 1.635 1.078

p-value with z0 0.25 0.102 0.281

W 43.774 33.263 44.914

p-value with W 0.206 0.645 0.174

KS statistic 0.137 0.188 0.181

p-value with KS 0.461 0.128 0.155

Table 5: Test of Patent Decisions Affecting Firm’s Stock Price

Event windows

[0, 3) [0, 6) [−2, 3)

z statistic 0.549 0.193 0.643

p-value with z0 0.292 0.423 0.26

W 1120.041 2060.189 1100.046

p-value with W 0.0 0.0 0.0

KS statistic 0.037 0.04 0.04

p-value with KS 0.316 0.233 0.235


